马春杰杰博客
致力于深度学习经验分享!

[mcj]SlimYOLOv3: Narrower, Faster and Better for UAV Real-Time Applications

最近关于无人机的算法层出不穷,这不,又一篇神文出现了。

无人机因为硬件计算能力较弱,要在其上实现实时的目标检测,需要算法参数量小、占用内存少、推断时间短。常见的算法往往难以直接应用。

一种比较直接的做法是对模型进行剪枝,尽量减少模型卷积层不必要的通道。

今天arXiv新上论文SlimYOLOv3: Narrower, Faster and Better for Real-Time

UAV Applications,作者对YOLOv3的改进版进行了剪枝,在参数量、占用内存、推断时间大幅减少的情况下,在无人机目标检测数据集上实现了与原算法可比较的检测精度。

作者已将代码开源,包含训练和测试部分,值得从事相关工程开发的朋友参考。

以下是作者信息:

[mcj]SlimYOLOv3: Narrower, Faster and Better for UAV Real-Time Applications

作者全部来自北京理工大学。

下图为作者发明的三种设置下的SlimYOLOv3 相比较基线版本的YOLOv3的结果:

[mcj]SlimYOLOv3: Narrower, Faster and Better for UAV Real-Time Applications

YOLOv3-tiny 是YOLOv3的一种快速算法,但精度下降太多。

YOLOv3-SPP1 是YOLOv3加上SPP模块的改进,其比原始YOLOv3精度要高。

[mcj]SlimYOLOv3: Narrower, Faster and Better for UAV Real-Time Applications

YOLOv3模型中加入SPP模块的示意图,作者是在原第5和第6卷积层之间加SPP模块

YOLOv3-SPP3 是该文作者YOLOv3-SPP1的改进,其有3个SPP模块,比YOLOv3-SPP1精度更高,是本文模型剪枝的基础模型。

SlimYOLOv3-SPP3-50/90/95,是YOLOv3-SPP3模型剪枝率分别为50%、90%、95%的三个模型。

可见模型剪枝可大幅改善模型在无人机上的部署,有一定的精度损失,但远比YOLOv3-tiny要好。

剪枝过程

什么是深度模型的剪枝?就像论文名字中的更窄(Narrower),它是要减少模型通道数。

去除每个卷积层中不重要的特征通道所以需要合理地评估特征通道的重要性。

下图可以较为明了地说明整个过程。

[mcj]SlimYOLOv3: Narrower, Faster and Better for UAV Real-Time Applications

YOLOv3经过稀疏训练,得到各通道的尺度因子,然后去除那些尺度因子小的通道,将剪枝得到的模型SlimYOLOv3在数据集上进一步微调,得到检测结果,然后进入下一轮的稀疏训练。以上剪枝过程是迭代重复的,直到满足一定的模型条件,比如模型剪枝率达到一定要求。

实验结果

作者通过上述方法,在配置为 Intel(R) Xeon(R) E5-2683 v3 CPU @ 2.00GHz (56 CPUs), 64GB RAM, 4 个 NVIDIA GTX1080ti GPU的 Linux 机器上训练,得到三个剪枝模型,并在无人机目标检测数据集 VisDrone2018-Det上进行了实验,结果如下:

[mcj]SlimYOLOv3: Narrower, Faster and Better for UAV Real-Time Applications

可见在精度稍有下降的情况下,推断时间(Inference time)、参数量(Parameters)、内存占用(Volume)大幅减少,更适合在无人机部署。

下图为各算法结果比较的柱状图,更加直观。

[mcj]SlimYOLOv3: Narrower, Faster and Better for UAV Real-Time Applications

检测结果示例:

[mcj]SlimYOLOv3: Narrower, Faster and Better for UAV Real-Time Applications

作者已将代码开源,各位读者可以非常方便地进行训练和测试。

每个步骤仅需要一行命令!

原始模型训练:

稀疏训练:

通道剪枝:

模型微调:

论文地址:

https://arxiv.org/pdf/1907.11093v1.pdf

感谢论文作者的分享!

源码下载:

本文最后更新于2020年3月14日,已超过 1 年没有更新,如果文章内容或图片资源失效,请留言反馈,我们会及时处理,谢谢!

如果你对这篇文章有什么疑问或建议,欢迎下面留言提出,我看到会立刻回复!

打赏
未经允许不得转载:马春杰杰 » [mcj]SlimYOLOv3: Narrower, Faster and Better for UAV Real-Time Applications
超级便宜的原生ChatGPT4.0

留个评论吧~ 抢沙发 评论前登陆可免验证码!

私密评论
  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址(选填,便于回访^_^)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

登录

忘记密码 ?

切换登录

注册