如果你的图片比较小,比如只有几K,或者十几K的样子,就可以很容易的将图片编码之后存为程序中的变量,等到需要的时候直接对变量进行解码并引用即可。
下面抛砖引玉说一下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import base64 def encode_image(img_path: str): # 获取图片的字节码 with open(img_path, 'rb') as img: # img_data数据可能混杂其他符号或者不完整,调用时需要检查下 img_data = base64.b64encode(img.read()) # print(img_data) print(type(img_data)) # 图片太大时,print打印出来的信息会不完整,再写到文件中保存方便后续解码使用 with open('ceshi.txt', 'wb') as f: # 临时存的名字,当然,也可以不存名字,直接使用 f.write(img_data) def decode_image(img_str: str): # 图片字节码有格式要求,img_str模板:"/9j/4AAQSkZJR+kRXhpZgA==" # 把图片解码到本地,需要引用图片的组件直接调用就可以显示了 # img_str = open(img_str) # print(img_str) with open(img_str, 'r') as f: img_str = f.read() # 读取全部bai内容为字符串 print(type(img_str)) # print(base64.b64decode(img_str)) with open('123.png', 'wb') as img: # 读取txt之后要保存到本地的图片名字 img.write(base64.b64decode(img_str)) encode_image("001.png") decode_image("./ceshi.txt") |
比如:
1 2 3 4 |
import base64 mcj = "iVBORw0KGgoAAAANSUhEUgAAAEoAAAA+CAYAAACMY42mAAAEGWlDQ1BrQ0dDb2xvclNwYWNlR2VuZXJpY1JHQgAAOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi6GT27s6Yyc44M7v9oU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lpurHeZe58853vnnvuuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZPC3e1W99Dwntf2dXd/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q44WPXw3M+fo1pZuQs4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23BaIXzbcOnz5mfPoTvYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys2weqvp+krbWKIX7nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y5+XqNZrLe3lE/Pq8eUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrlSX8ukqMOWy/jXW2m6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98hTargX++DbMJBSiYMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7ClP7IyF+D+bjOtCpkhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmKPE32kxyyE2Tv+thKbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZfsVzpLDdRtuIZnbpXzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJxR3zcfHkVw9GfpbJmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19zn3BXQKRO8ud477hLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNCUdiBlq3r+xafL549HQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU97hX86EilU/lUmkQUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KTYhqvNiqWmuroiKgYhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyAgccjbhjPygfeBTjzhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/qwBnjX8BoJ98VQNcC+8AAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAEAAAAAQAAAEqgAwAEAAAAAQAAAD4AAAAAEVfhfQAAHclJREFUeAHdW2mMZcdV/u59+9b9et9mumfzzNhxbCceHI+dQIgDgWBEUIAQEAgh8ccK/IAQKcqv/ACBQBERCAmBEKBIcSABQX4EsckeYjtexuMZe2zPeKZnenrf3uu3b/fdy/fV6+rcbvcMjZTEFtVzX9Wtqlt1zlenTp06VePg/xacO1S/U9kdPvu+FwV36OFOZbs+Owhz4Tq3S+9q9F3+Egbndum3sRBmfG+hLdsbq96d8va2806/7wfGnfLCZTu0R3dSuxNhIPamw+/6au/77pbe+TfL+H6xzbNU6l387M3HfkCpYph5+367WJ3Y+kor7H3v5f7gfvcyat8V3+7ZS539xuTvBSoMhiq4fGyeTdvY5ltQbGwafhf9WIb3AuSTRuXZ2KbDpNtvd0nUXkYtIIrtozrhtN7DT7iTve2Fy76f6R3mtjvR+95H4Ig+5SvWux7xptgGW2cXUCpUgR59YGOlI9t5FiS923L7jeJ3YwiDJBD03uVjwQnTvRcs1TXBTr0wszYdBkXA2Mfmh2P7jRoNd2w6eYd+LJMWKAtMGAwBpiccVL6Xh8ACFa5omRYQFhwT/+1Xv/rombNnn+jLZe6LROOjDmuaBtyALUfgOPzE9+FGIvBZuDi/hGtvzKPVqKHa6eL8+Vm8cfMaUpkhZBNd9A0OIdE3iFarhlKphKAbQeD4iCYTcCIxlGs1tGsduF6Hw98BOnWcfeQMcoP9WH7zCn7tl38a77nnJNqeR9YCBIF4Jg2Bz7TFqceaodCNoNPx1mq12qXnn3nmzz/5iU88E2Z8O60PhcGuBixyigWMjcMACYvIi6+8/NuHpmc+13WIB4ly3ChcgqGKItJ8SuJc14XX8fHiC5dw/eoc2m0P5a0mVmsFXJ9fh7dZwfTxYwhicRTKFXhsMGCviSQbdh3iHEOXQCm0Gi3UWadS3GKnbcT8DhL5QXz0p34c9VuzyEba+OznP4OowUZAESB9GAJJAJkOmO2QNlNsBtP1527c/KN7T578EvOEMNE2sZUySZaaM7H4FDj2UUvhR+VRSdIDZ97/5cAJXDGjKr0PSAYTRM4QF4nwUya/89QL+Kev/SPm5mZxa2kL8+sV3JqfR7dcxsT4FBwCsVosaXTR35dCNOrA8wN0upQbSoXndQlSG9WtLTQrBb430azX0WzVUV9fxvL11+G1myhVG7j33mMYHRoi4J4ZOIHUo02/Pcbsb49vDibp9f3AyQ8MPHLmwQe/8/dPPrnAqgIl/Ohzg7sSe6der4/dYLlnzj70hBf4rjrQ1FLHjqNpoiZ6lX0C2CWRV155C+f+8zk0WDeIZtCqt1GrFTGcjiI7kuY0KaJe2EK0E6DuOVhZrsOJxxGJxhCNxeBEu/DbbXRaHbTrJdRrVQNKh9MPThdRPkVOU4ffkwLcunkLp08c7wk1aSFl/OlJDuHY5pz8kli996RW/Assz33w4Yee4Mtz22zoQxW+TU+FgdpmWz2ZRx9JotxMPHmf62uKULz5JwkyXbFzjo9ptdMNsL6+gRL10eG7ZrD0WgPzs4twOPLxqI9a1UGrmUE8HoVPSWq2SE08xqnKHkQ086TLIjG2SekK2g3qJn7bbcH3WkZPGcnyKTmJCCoCzo1jdbWEBqUtRpANURGR3wNCQ6g3USjIjOSrO4bAUB0gm8ncx1dRYZ8wSLaxHYlShoLivY/rRNxRkHjTFEuNSuJ7bxqyU+kEv4uRvjyaww1cvHgZXqUGt1uFk3BQpVQ12110/CLS8QwJjrITB9FuDH6CY+XHCQaVBMEKuDAIfK/Thkcl7/hNpIhBioiWKWWdLhU716BOxENmKIe55XVsUMImRoYNPo4Rc7ZBOqWzrPqU7hRjJo89aNAZSZJHmW1B2ss7i3qfmfHUG4MqKYQr9xogEIYBvmlU1McOWPxArEWjZJijuUBdVNgoUYpc5OJJtLhqtZoNSkkbbkCpoYR1uEr5lBSv24Tf4lNvUYKarNOi3mJ5u4SInk6FK2EL3VaDEsnpRj0UJw0x6rRkIoYEQXv+mQtYWuNUZv92pZOWMopddGuA+Y8J8cZ4m2XlfTf0+NzNu0otJjsSZT+xBbvA8s3IECDfJfQs4j9DAIERSOaPErW4NI9XLr6OapHSFKFOGhxGqVxHhEQZ/RZNcgS5UgYdKmhKTNslttRNkRZXrjiBJBkExiGALlc4TZmAYHg0LWJclLpxmR2cNFT4LkUmkojj7IfuJ120HLi6KvjUoUZazBt/RCv/JMFG8NWmEjb0kgIqzLNK9b4TwjrKZtoKOx8GnBfEAVrUAin0Hly2vihhswEuvPwqbt1aRalQpmJ2CWYU/fkBdDaaYlNo8XsX7W4bDnVMjCZGLu4gz+mJiM/FwEdKEuvEUW84KDc5zWg2tNodSkwMI7ksqXexSQld2qijzal57unv4Pixadz/nuPsj4hJR4VwMCucKBY4RFSg2SAh83ug7fC6Xab3XUFA2UxbWRVs2sQagZ6NIqRYyhEVYBESLd2VpCJdXV01dpPL3oOggfzgOMplTkE2lajTBHA6ZL6GTlnlPoazUUzmUpgm8wOMPYoTTVakKDVN6qJ6s0nApAejKGxVKYkuRof7kelL0hzI4dmLi/jn82+hf2QcC+sl2mRVDPVnOJ1ly5Fs0cnIAGEGdzstXkiz8DFyJrT28KsMBouBSe8nUabWrh+Deq9x9ammNUIiQkR1ydDi4hrTSUoTbR+OeDoWRZMKdK1SQTqdJGFJVEoNSmbbrILH8lmcGMxhnExnybxLqzlJqYlRIuoNHxEq6xT1UMvjillvoE5dlsokkEyncHRmHJMTE3hzYQVPX3wNP/upn0A6SUOVU1QSZ1AQA5IuBdFKws2AS2exln4Vdk3TXta+vwcByvTW64TLLKcOSYHsJiPOJELKOZbiSkSDsFGvolyqYXl5hQx6BKeNwXyEOslDIkUdw48zfI4O5zAzkefynEQ+l6TZ4BLAKIFKsXVKa4xWEud6l7qqVW1is1BCIptGhlITSyVxZKIPP/PYg/jXL/4xLp+/CP/jH0NAs8GnjohIokildJfkgkMscSJQRnqU3IFK0PZqKbp92A8o8yU/sXHvazYu20NKUX+ueiPDXVrTyVgCGRK/vnrL1I3QBAhoL7mtFgaH8iSyhRqnoY8GupSQ0XwU0+MZTIz1IcGpliHIEU7fGA3PaIwKP0aw2Lb2bpJEjf9YbBDxXA7JpOqyHns6c/oIjo+eRrXR4HRtmzaECe0Z9slvtRlhkKnQm4Jqs5c2oDFfCiQULM823inaD6idQptQ445+tgNtT3bAQJDMaDEZMN3kFMmP9yPR6JKhFNqMU8k4lqjgK9zgulz+HG5PpvP9GB/oQx+nUoyjL2MxIus8QgC4kkUIsgYD1HA+TYJMfx/fqMM4nV2ZIYTc41QcHczisUdOo86yGAHUVo1bR+oggkVyI1pQBAQztFprNhj0uED6QS9fevAg4YBAaWSFPIHZ3h4EHCZ1oinpdblcc7cfjXHL0vDQl0yiwem3uraK4f4EmtUykvEeQWPUJfccHsZAX44mAdW3GOIqF+H3aton4BGtXipjjz0QE+SVFjnLHeaL8Q6lKB7zcN+pQ3jywg28euECpZPSSKBpbZO2HnBRSl9ENhbbitJkcai3ouxLOlE2ocyYg4QD1TLuCwJljE7uteCrE9LL3jXrBdTAcB6jE8M4//LrlCYqVi7p9Y0NLNcEJjDOvV6Kyvr02ABOz0wgTgcBXTUcdSpy1o8aidJerDe1zHiYwYiY1dCXi4C9ubLc2akGjBtbDPZn4Tc6yCTSyA0MIdfXT+ADum3KBD+BzdV1Sg9dNwSxLrcN7bc223GoM+PRBCIc1IOEgwGlfZ5ZviXAJJhpGX0iWFsD6ltOsRSmDo/hmW8/hyZtoE6jyZlJKWhTQrh/SzpJvIcgPfzeo8hluefrG0b/xAwlioZnrcyNbpUKu8yyNNIsT6UdZDJZdiUJkoBJohlT2pxogHSOiwqnan82i/ExroLTx7lo9HP2dbD5+tNo3JzF4Yd/Cvc++kEjTfq2Tb21VSzj+ZdewvUbV9CgCXKLrp+DhAMBJUXYI1O6iSsf340tsi1VjpxUNAyHhodRLdfQl6V+oiLvagp5srOiOJJP4oMP3o0jR48gPcCpd/gEpcdHcf4GiitbNCBLWFxfp2ulgkwug0Q6gkOTkzg6PYZMNkdeRAEHgNJb3ihgdWMTXpzApeK49vpl/Pov/wqLc3j8wQx+9C6uwCz/ztU3UTzyozhMCU5QDxbp5rlxfQ6XXryI+dWbmF9awls3vodACXGtEr4kS0uIedesZ1qrn/F3ORgfGcHrc/M4fXwGgzla11yJGnycqocz9Bu99333c5r1I0v/UYSS1CpsoLa2zmnq4dD4CIbH82hUufGlHVZvVgl6GWsLoKRyOqbT3DM2sba8hTffuIbZhWVa+23MnDiK6dEczv/301gOEpiOTOJU8iS63Ii/eP1l/OEX/1LkfjfQ1gM32iak8jRNEtiqfbf4dqkDSdSOe8KAQmniSiUl3oPMzAzutdoYHpvE537j51GYvYZyG6jEcyg16xjjhvi+M2cwMXMEVU6xdmkTzXIRtc1NprfQn+lHPJtEND0AdzLBFa2KEsuatMlkkdfp6YxzgMrFTVQ3t3BiZhDvfeC4WUwaNDe++ex1LFNvUgxR6Q4hPjyD1uoCPRcNoH+Shm2UZgw9Elwo2qS7yylIA55Bs4NSf4BwIKAIjZEomSVmc8tOesabXGcCLDD7tyP9SfzOh85iZSyJC7M3MVeNYm5kmstNgLcKpHmrjTy1eIIjWtnawMaNWTRpEc2tc/dPkyAzMMCZyvZ8+qJoZTeLFYyNDnJbo/1eBa1Sgcaqh4F8HqksfS9U/I1OC5/84Qm859CPYa3YwtFxKmhKq3AYSnWRbbewslFEJp4iLPSZc5WTBa9FQW4is7n/XgFFVNiU4CBAZrnr6SnazcyVreJwBaH2evFZrPz9txA5fRgPHD6Eu90urnkD+Nq5F7A6lsfX37iBLa+BAe7zZvq5BwzyeHWxjJuFWwQjgzdX38Sxu0/g5OQ4gltzNHm6uLx2A2cIYozpi69eRZnKOjefg5vtB50QXERcjOXruO+RQSTonejSj1WpFGmcxnFoqB8DtO4XKI39XIMatOFEqzgxayhnSEDpOkg4mERRPAPjx+FqR4Jt0Gg4BKMHHl271SrcMW6AuSXZXCqg5Wzh5KnD+Nj77sLjjz2E/twAnv/vZ/Dc85fwLa6KC/UEupyan/vFR7jKZXB5oYDBo8eR4xRcJQjjkzm89NYtfPLzX8GJIW6GZyap3yZx7NhpnJoaQHllET4XjnNzEbSWXsXj741jSNuYdpVTTXu/FrczBINuY7sRNm4YwUXwzMCbX8vR7eMDAaX9kz3BICpsrWf4a1Skq2Sht9q0mk8eB668hg73ZR43yaV0F4e5sfvoo/chztUvxxH+8GMP4+5j3PFfuYYXLl/DuUXqtnwfhnP9mJqcoMczRR9WB8P3TGCp1sA6N9V/9dmfwdWFTQLr41c//mNocwVLUXcF3O+tlTboQR3Cv10/hIs3r+BHTg/Sk0rpdunP4mYvJjQUSKcWYdoXhgWzp2DZwTTU2w8XTJt7fwLOabPL45ymaWuEV3UkyDL6OGjcztErMM6l/MRh1Gc3EKNbeLiPU4PbiKHxIcQIQLtY4Okcj52yCYxOjeKHaR1vNK/hwrUFnLmbrhauar5X5dNBjUr62ZfewD3ZKj7y8KN4oOXgz578FpLcF+aom9gz2pSUfu4Lm1tzaBQW4I8AcystFJbLGBik/pRTUC5RrrqBjGABSLp7LmxpV4OfWPlfw8EkiqPhUmo0/RzqIu07BJJRXZQweRJEgk89kzhyF1rX1zBwzxE0aly5OB1FkE/dIskLwFMF7tMcGqPJTByfOHsvFkpNXL16jT4ph5tb1qb1XNws4v7hFN536hhXuwoGR6bw/qlh/Me5p3D00FHDbJz7yAJPKdY4BR875uGv/2UeJw7l8On7+xDQc+FTJ0XkFDQUCBT1r9DTq4YBw4TJvOPPgYAS9lKCmnKyjHvv0k903Rk6mEcl7xFIl4ZkcPgGBmhVH7r7CApLN1mfm1iPW1dhxdMVr0ZfOPWHywOHQfqlJqcnuGzr8IEVtLfhUu6X1pHiqUKdG+0OwfYGKnj0/cd50lOggHDV5Llft8nNNw9bPzDBw4WhKXzl31dQaZUxMsb2ak0C3KR/nRJlAKJOkilAYAxgROyAGBkADwSULHGtb8aDYIDqgR8hOOawgU4m2VY0VNBJZhF/7McRFDb5FOBv1Wmr0ENAADp1OvXKWzz9LZFJj5tTtkMHXZdehRhXrHgkTQngtCIAW2s+NjaXIamJ0J/eqdNI5DQeGeV2hdslKWpu8lDk4cWlCwES1D13TSWxsU5XDm0qOerkLdDMU5DqlrHc3bYFzeKt9wOitd1Mr7Hb/ZqVglNHLg+PsZxpkhJpKcmXPJyMKNAEiyPsEyx/+hieXivgSqlCydAWhKR2eFBAK7xNprucfgEBCtiW/Oe0WGkwt9CuVLFF63796gKll4zSgWfa1a6fYOogVKfCXBso0XEe0xfxwuvzLPMxOcBtCvtwojWaFjX6vrhCG5EnlawvIvVnBt6+m1hldw4HlCgCYpYHAkFQeHZCSaByVJoGoDRUl0Nk+pSUkMAup+XIAw8AY2lOJ5JXoeRIGmkSyxekgwS0yEiU3/M4KqKYjPM8AsUNSl6nhMmRSa6mBJ5gd2lk+twzKriyrOlSbvFo66VXLuEGvale9xSmRrJ4bbWG9S2uwlvABg3cNr9XkAWuP2MWaCPPPK3YWqQOEg4ElFAKyLhGQmgYZxeVsbhSnrAxviTaVCIkwpXRo0U8Rks7njsFr14wkiOrWz5zUSmvgLDqkhEn2jDfy28ksnNc9rlA4oXnzqPJaTSUSiNPz4LHk5rJo9PoJrgd4enxysoSSitXsUV7rMazweE+WuvEvtyU/50DFCmbSyKSddGt6UN5Myu11IYGXzPiIOFAQMkEiJBJc/Rj2tUPH61iREkroEZZPnTpKo2S6nqkxNVtFfp+PI5+QOa6NFjlK5Nc6ksB5/N8z6cTjtpdwmgOOMemDyNdKSNO76akgssB0rqfQOnscO/YYjt+cw0ffvguPPWVS5SeKvI0O4b60ljn3nCQbTcqVPjbBrJ4oNIy+tAAwwHtcSHZ+t/DfkDpewUbc+Q5beRjpVTpDpQKNHXMvo96hP1TktihDv40Ynw32oAVFXeoeLtNEq12NIzK5f6PG0SaCQSBviaPZkFAvVWTPca8bCaF/qEMpZM+c07XCLVym8q8yksbKW5pmpSgZmMZM4cmMEI/lFw0Jw8dxsnRNL2pMbOlyuZi3HBzFd0UrWZcKbm9IRJMRpo4uKGw6yWU/7aT4nCZTRMnSouWCfHIjmTv6FWmp0s9JTsqoBFIYWAdEiJJ5/E5bUbu51iPS3+DoOjelJS5x7Qol5I26wA9Dy0q6TbBLhSLBI0HFm4MHR5v6XLICD2Xdbbb5myKjdCvTrPhwpVlFFYL+Mj4MGYmM7i5tIx7D3cwPUg3iggh2B5Bj6kDEzgQbKN3N0GDyXyBJJ40crvD3vcDAaUZZkbV4ZZAMiObqueUZ3tERdPLHGNpP2jmvowJEsZiqQ25Xdu8gNEhch1z94CrHOsZE0cXNnj9x+NJTcC69VIXSxdm0Udmk/F+nuPFsbFK1y7NgI1IEcc+fBR9PLJ65Y0rbF8rZY1u5i63ODpS58HFUIo+9wYvdTSR5/4lt20fiJ4u3di8JcG+yQEfI0z2qGY3UHrbBVaP714lFdhCm7Zxr8b/31/Lp40tp3pX2PcO506hKujxOY20T9IJhoxHmiymSLpIFzA0CWVrGeOTw6SR8vhNnrqij1O1xmnVqmzRY0k7iQcBXodHV5S5LnWTQwXNa3y07Dm92eAMnXIDWaC2WKDyziIRod+cezYdtU9NTfD0NEqH3yKmBtu4PBejwvYxlHGwTJOgWu9glKfOAa8X6U6VDkAT0oUMxhqnlMp2k3Ro5pEbprgP3OZT9bZD7yP7xnivMrcVFNuHKooKl5ZvhIxIV3W51AkU3SgRcPIsCCgdhuooKMZlbSiXxpBcrrwToMsTzWIV89d5PZEmQDzuI01qIzpxictAVHskRrovzYsag2mzIFS4dVktrZgzu8EJbqyzfajwjmcUCQxHmjj/7Yv45Af6MDrex2U/xsOJBgYTGVRoHtS5ia7L+GW7ClqQqCf4mDWZtPdsKaNQjaFg+BVyYQz42gthoMIVdkBiNR24UPbYqXQQmSY2pks3iLPVgJfEWlzSYxjK85YvCe6nHzrt0u89e50KtcbHQ43nfLXqJq8p0oeeSII3i5GjfZTiCU1Cq6l44CN9mOL9guzgKMYIuPRXwG2OPJylQhPjj3wcx37oQYy89DLein4T87f+FcNJSVIORZoZUxkarqTP54LAS1d0gvbYEp1aYDhSpF8gKYe6tGc+CCALkuVdCFlMdiRKGcLeVgrHfqfbXEv46VFdaJC/2Yw8metwuyAbaCg/jCkeGWXJvFdYQ6yzgfKta6jTIIymszwwqHJzW1LHtDC6qFa3UKnWedTUh3yQwwBPmdIpl9JIvzmVe5xeiDjLXL7LJDFzqEIJ5hncyJF7eCjah1NnP4w/4LO59BnMnvsmmv/yBcyNDuHk1Al0aZVX2mShQ4mXIDFIjsSepqOCVj1j0rhBVa98wjzbtKoqvQPUTsZ2gQr1sRZat9VoXEok0x81000V2HuDS3pfepA3S45gaGiAtSVxdJPQDVt48xne3l0zRGbGpZPKHOWenzrKaZai0digV6BY4M1fukNq+QT9Ry5vr/RsoDbNhzjLnSg3v2RQq632mEOnP8Rti4/lBd3BKvFyaZL2Vh4P/PwT+MLo/fja7/8mj7vWaaoMYJP01SnNqq9gVjjFfByKrS66dLWZd6KXqKcsr4rfBhLzdgGld1tJH2gIFPuXXn3zzx86+9BHeFvXTXLaOG6Ktss4ZqZnKAVU5KwkSiIEweOl+uvfftYcbed5d8mhUg00fcyxOU0JSkiEW52E7hHQSvDqZXoyfZ7TxZDltepEMkInX4Telpg5G0yksmgTwNiRB7B4/hpe+etvUEr7MEsX8U2eAmd42vyhj/0kPvjwGXzqd/8IN//hs5xuDUTzGTrsKFpGhGQkizUFpmjZ6x4ovQnaTnyJmYZPU9hLWxz0gQnaptkgYBQU73qe+q+nFz79C78U3HXq9CNNZJ0pnqycOHqIR9a6lkOhpiS5THcq3NwyXrx5ncbiHMZPnjDOszqnWZF+pBb946JDVJgdBXWeaPXpQahzm9LUFoalvKqNlTLwgV/5LRQTE/iTbzyF1+g++Yu/+TtcevkcXrkyy0uuizw23+R9AxqyvMp47uXLmNvU4Ss9DltXeS+U/XAVXKn6uFKoUw/qpJiMmRNnJkSA6/4eCfw6ydHM0WMBU/xdZJm+nTJXRQuWGsDjjz/+pS9/+cvPHzt24olOZvW+lfkI/4tHr0q9wjuXTEY6DUoDL2XwXG3l6gVEeRLLfSzvdG6h2KAfnf/7QHRqtXQ9jTKZZDeastJdcRameUE/ReVdohl+94MfxGLzebz40tPA7Gn83OMfw2AqwMl77qGpcMjs7QaHR/kd/0sI9derl69idpE3+II6vI2XqbfVh1gR16LVKPBNdvYq03/KHfm3mXk7kHZJlb5WUBx+ttcgs7hJ6sJPuMym7be2LcXvdNglESRGiO19LEg2DpdboExsJco2apnTe28obI6Go5cncAScwFHagqT43RgMoyTM0q9YwIRBCb+H69v0vspczKoRgRAGy3Zk88MA2bS+teGdAk50hoNlNhxbkCxPe99t3Z12rEQpQ4Vh5sJg2Q9Vbhu34NhvbKy23k1B9CpYHmws/iwv4TxTeftH+Sbsx5wFQBVs+k6xrWca3P7Zr91w+fc7vcPgdkf23QJyp1if2PIdOsMSZTNto/ZdsfLCYCnPgrE3Vtm7KVh+9ouVF84Pp3fxYJnclbn9Ysv2xiq+U95+bb2TeZZ50WDTNt4vL1y2Q7dleCdjn0S4zu3S+3z2rs0KA3G79NuIDzP+tsJ9Mu5U/05l+zT1A8sKg7G30zuV7ar7Pz72cmwshIVAAAAAAElFTkSuQmCC" with open('头像.png', 'wb') as img: # 读取txt之后要保存到本地的图片名字 img.write(base64.b64decode(mcj)) |
运行上面这段话之后,是不是出现一个名为头像.png
的图片啦~
本文最后更新于2020年8月22日,已超过 1 年没有更新,如果文章内容或图片资源失效,请留言反馈,我们会及时处理,谢谢!